合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 兩親性納米凝膠ANGs的親水性與乳液穩(wěn)定性和相轉(zhuǎn)變行為之間的定量關(guān)系
> 密封防拆射頻標(biāo)簽的安裝時,需要考慮表面張力嗎?
> 不同溫度下可溶解聚乙二醇低共熔溶劑的密度、電導(dǎo)率、表面張力等性質(zhì)(一)
> 烷基-β-D-吡喃木糖苷溶解性、表面張力、乳化性能等理化性質(zhì)研究(二)
> 基于LB膜技術(shù)制備膠原蛋白肽覆層羥基磷灰石的新方法——摘要、材料與方法
> 基于界面張力和表面張力測試評估商用UV油墨對不同承印紙張的表面浸潤性差異(三)
> 0.01mg是什么精度的天平?超微量天平的稱重范圍
> 羧酸鹽型Gemini表面活性劑GAC-31合成條件及表、界面活性研究(二)
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測及消化吸收特性研究(一)
> 4種油醇烷氧基化物平衡和動態(tài)表面張力、潤濕性、泡沫性、乳化性質(zhì)研究(三)
推薦新聞Info
-
> 二甲亞砜與二甲苯異構(gòu)體混合物的體積收縮與表面張力降低效應(yīng)(二)
> 二甲亞砜與二甲苯異構(gòu)體混合物的體積收縮與表面張力降低效應(yīng)(一)
> 表面能與表面張力對凍干制劑中“小瓶霧化”現(xiàn)象的影響機制研究
> 新型懸滴實驗系統(tǒng)的研制與二甲基亞砜/甲醇混合物表面張力測量(二)
> 新型懸滴實驗系統(tǒng)的研制與二甲基亞砜/甲醇混合物表面張力測量(一)
> 噻噸酮光敏劑體系:光電轉(zhuǎn)換與顯色特性的深度解析
> 溫度、締合強度、截斷半徑對球形空腔中締合流體界面張力的影響(二)
> 溫度、締合強度、截斷半徑對球形空腔中締合流體界面張力的影響(一)
> 一文讀懂什么是超微量天平
> LiF-CaF?-Yb?O?熔鹽體系表面張力的測定及其對Ni-Yb合金電解的指導(dǎo)意義(二)
表面張力在封閉腔體自然對流換熱中的角色深度分析
來源: 瀏覽 118 次 發(fā)布時間:2025-12-01
本文基于《耦合表面張力的封閉腔體內(nèi)管外自然對流傳熱特性》的研究,聚焦于常被忽略的表面張力因素,深度解讀其與浮升力(瑞利數(shù)Ra)的相互作用對換熱特性的真實影響。
一、 表面張力的引入與物理模型
傳統(tǒng)腔體自然對流研究多集中于浮升力驅(qū)動。該研究創(chuàng)新性地在浮升力之外,引入了固液界面的表面張力。其物理模型為:一個二維封閉方腔,中心放置恒壁溫加熱圓柱,腔體邊界為冷卻壁面。
研究采用格子Boltzmann方法進行模擬。表面張力的模擬關(guān)鍵采用了基于分子間相互作用力的IIF方法,并通過拉普拉斯定律驗證了該處理方法的正確性。表面張力的強弱由奧內(nèi)佐格數(shù)(Oh)量化,Oh數(shù)越小,代表表面張力效應(yīng)越強。
二、 表面張力對流場與溫度場的擾動機制
模擬結(jié)果清晰地揭示了表面張力的擾動機制。當(dāng)僅存在浮升力時(Oh數(shù)無窮大),流場呈現(xiàn)規(guī)整的雙渦結(jié)構(gòu),溫度場分層明顯。
引入表面張力后,即使強度較弱(Oh=0.388),也會在加熱圓柱附近產(chǎn)生微小擾動,打破流場的對稱性。當(dāng)表面張力增強(Oh=0.122),擾動效應(yīng)急劇放大。這種擾動從圓柱壁面開始,逐漸向整個腔體傳播,導(dǎo)致流線變得紊亂,溫度場的等溫線分布也發(fā)生顯著畸變。
這種擾動本質(zhì)上是表面張力與浮升力共同作用的結(jié)果。表面張力在固液界面處產(chǎn)生了額外的驅(qū)動力,改變了流體微團的運動軌跡,從而增強了流體的混合能力。
三、 表面張力與浮升力的競爭與協(xié)同關(guān)系
表面張力并非獨立起作用,其效應(yīng)與浮升力(Ra數(shù))密切相關(guān),存在明顯的競爭與協(xié)同關(guān)系。
在低Ra數(shù)(如Ra=103)條件下,浮升力本身較弱。此時,表面張力的影響范圍可覆蓋整個腔體,與浮升力共同主導(dǎo)流動,形成復(fù)雜的多渦結(jié)構(gòu),顯著強化換熱。
隨著Ra數(shù)升高(如Ra=10?),浮升力作用增強。表面張力的影響范圍開始收縮,但其在圓柱附近的局部擾動效應(yīng)依然強烈,并能有效增強該區(qū)域的換熱。
當(dāng)Ra數(shù)極高(如Ra=10?)時,浮升力占據(jù)絕對主導(dǎo),流動呈現(xiàn)強烈的自然對流特征。表面張力的全局影響被抑制,但其局部效應(yīng)依然存在。
一個關(guān)鍵發(fā)現(xiàn)是:在Ra數(shù)不起主導(dǎo)作用的中低區(qū)間,表面張力的引入可能導(dǎo)致?lián)Q熱強度與Ra數(shù)并非單調(diào)正相關(guān)。例如,在固定表面張力下,Ra=10?時的壁面Nu數(shù)峰值反而低于Ra=103時。這證明了在特定工況下,忽略表面張力將導(dǎo)致對換熱規(guī)律的誤判。
四、 表面張力對換熱效率的定量強化
研究的核心結(jié)論是,表面張力能實質(zhì)性強化換熱,且強化效果可定量評估。
在Ra=10?的工況下,引入較強的表面張力(Oh=0.122),與無表面張力情況相比:
加熱圓柱壁面平均努塞爾數(shù)(Nu)提升了60.35%。
腔體左側(cè)冷卻壁面平均Nu數(shù)提升了93.5%。
努塞爾數(shù)的顯著提升,直接證明了表面張力通過增強流體擾動和混合,極大地提高了熱量的傳遞效率。此外,局部Nu數(shù)的分布也發(fā)生改變,由均勻分布變?yōu)榇嬖诿黠@極值點,這反映了表面張力作用下?lián)Q熱在空間上的不均勻性增強。
總結(jié)
該研究通過精細的數(shù)值模擬證實,在封閉腔體自然對流中,表面張力是一個不可忽視的物理因素。它通過擾動流場和溫度場,與浮升力競爭或協(xié)同,從而顯著改變換熱特性與效率。尤其在浮升力不占絕對優(yōu)勢的工況下,表面張力可能成為影響換熱的主導(dǎo)因素之一。這一認識對電子設(shè)備冷卻、微流動系統(tǒng)等涉及微小尺度對流的工業(yè)應(yīng)用設(shè)計具有重要指導(dǎo)意義。





